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Abstract 

Hybrid grids constitute a significant class of meshes for complex-geometry flow simulations. They consist of prisms and/or 

hexahedra covering viscous regions primarily, while tetrahedra discretize the rest of the domain with pyramids serving as 

transitional elements. The local changes in element topology form grid interfaces. This is especially so for cases where the 

number of prisms/hexahedra per layer (stack) is not constant (“chopped” layers). The present work deals with the quality of the 

interfaces encountered in general hybrid grids with non-constant number of layers. A priori estimation of the quality is based on 

truncation error terms. Four representative types of interfaces are considered. The effect of grid stretching and skewness was 

examined for the interfaces. Further, the quality is improved via repositioning of the central point of each of the interface types. 

The improvement is quantified via application to several hybrid grids.  
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1. Introduction 

The need for field simulations that involve complex physics and geometries poses a formidable challenge to grid 

generation [1,2]. Hybrid grids are a broad category of meshes, and are advantageous when demanding automatic grid 

generation for complex configurations [3-5]. Prismatic and hexahedral elements are created for the regions of 

boundary layers, while tetrahedra are used over the rest of the domain. Pyramids are employed as connecting 
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elements between the prismatic and hexahedral elements and the tetrahedra. Those areas constitute the interface 

regions where different types of elements create the local control volumes for the Finite Volume space discretization. 

There is little previous research on mesh quality measures and improvement for the interfaces [6-11]. The present 

work is intended to contribute in this area.  

A key component of a grid generator is its mesh quality metrics. Those are necessary as: (i) requirement 

specifications during the mesh generation, (ii) guides of mesh improvement techniques, and (iii) sensors in grid 

adaptation procedures. Two broad categories of mesh quality indicators are: (i) a priori and (ii) a posteriori 

estimation. The first does not make use of solution field information and looks into the grid element metrics. The 

second “worksˮ with the solution. A posteriori metrics are usually solution error indicators [12-17]. A priori grid 

quality assessment has been based primarily on geometric characteristics of the elements such as ratios of sizes of 

neighboring elements, as well as on element shape measures, such as angles of the elements [18-20]. In the Finite 

Element method, the quality of a mesh is often given in terms of the element/mesh regularity [21].  

The present work has a dual purpose. First, it introduces a priori mesh quality index for interfaces of a general 

hybrid mesh derived from the analytic expression of the truncation error. Second, the study focuses on the interface 

region of the general hybrid grids. The relative research on quality measures and improvement devoted to hybrid 

grids is limited, especially for the interface region. 

The truncation error (TE) is an important indicator of mesh quality. Direct relations between TE and mesh 

distortion parameters, such as departure from orthogonality, skewness and uniformity have been reported in [22]. 

However, despite the large number of studies on the relation of TE to the numerical solution [23,24], there have been 

few derivations of mesh quality measures based on it [7,8].  

The present effort is based on previous work for two-dimensional hybrid grids [8]. This work was evaluated in 

[25], and presented favorable agreement between numerical error and the mesh quality indicators derived in [8]. This 

was a motivation for the extension to three-dimensions [7], and further to focus the work on the quality assessment 

of interfaces of three-dimensional hybrid grids, as well as on its improvement.  

The following section 2 presents the mesh quality index. Next, section 3 lists the common types of the interfaces 

for general hybrid grids, followed by an assessment of their quality. Section 4 presents a quality improvement 

technique for the interfaces. Finally, section 5 contains the summary and the future work.   

2. Mesh quality index for hybrid grids using truncation error terms 

The goal of the present work is the quality assessment of the interfaces of general hybrid grids, using quality 

measures derived from the analytic expression of the truncation error (TE). 

2.1. Analytic expression of the truncation error 

A cell-vertex Finite Volume discretization of first order spatial derivatives will be the vehicle for defining the 

quality of general hybrid mesh in three dimensions. The discretization of first order derivatives is a common 

calculation for many field equations in Physics. A low order discretization was chosen on purpose so as to “bring 

out” the bad elements more clearly.  

The truncation error (TE) in the calculation of the first order derivative is defined as the difference between the 

numerical and the analytical values of the gradients. Using Taylor series expansion for the field variable u , the 

truncation error is cast in the following general form:  
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(1) 

The error terms (e) contain grid metrics only. These terms will be the basis for the a priori evaluation of mesh 

quality. The general form of the error coefficients of the Finite Volume discretization method is: 
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where 
f

 is the summation over the external faces of the local control volume surrounding the grid point of 

interest, N  is number of vertices which participate in the calculation of the average value of u  for each face, S is the 

area of each face, and V the volume of the local control volume. Also, ,x ym m , and zm  are integers equal to the order 

of the derivative of u with respect to x, y, and z, respectively. Finally, k is an integer coefficient from the Taylor 

expansion.  

The equation (2) relates the truncation error to the mesh points coordinates. This will be the vehicle for making a 

direct connection between TE and mesh quality of a hybrid grid.   

2.2. Mesh quality index for hybrid grids 

The contribution of the local mesh topology to the truncation error is the focus of the present work. A quality 

index for general hybrid 3-D meshes will be used with the following properties: (i) it is a local index, one value of 

index for each one node of the mesh, (ii) direct derivation from the truncation error, (iii) relatively simple to 

compute for realistic cases, (iv) independent from the local mesh size so that the contribution of the mesh shape and 

topology is brought out.    

The general form of the error coefficients (EC) of equation (2) can be employed to yield the value of the mesh 

quality index (Q). This is carried out using the absolute values of the first order EC terms: 

Q
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(3) 

where iL  is a local characteristic length for the normalization that has been introduced in [8], and i denotes the 

calculation of the x, y, or z-spatial derivative of the field function. Thus, the mesh quality index is defined as:  

Q Q Q Qx y z      (4) 

A zero value of Q is the ideal value of the above index.  

An application of the suggested index in a hybrid mesh around a 3-D cylinder is shown in Fig. 1. The boundary 

layer region contains relatively uniform hexahedra so the quality index takes its optimum value (close to zero). 

Deterioration of quality is observed in the interface region and in the farfield, where the values of Q are quite larger 

than zero.       
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Fig. 1. Case of a 3-D cylinder: (a) Hybrid grid fieldcut, and (b) the corresponding distribution of the mesh quality index (Q). 

3. Elementary types of hybrid grid interfaces for variable number of hexahedra stacks 

The previous work [7] focused on the quality of “regular” hybrid grid interfaces, that are encountered in hybrid 

grids with constant number of layers of prisms/hexahedra. The present work is focused on realistic interfaces that 

contain variable number of prisms/hexahedra stacks (“chopping”). There are three primary “chopping” types: (i) 

node-based, (ii) multiple node-based, and (iii) edge-based chopping.  

Node-based chopping of the layers frequently originates at a single point and then spreads out in all directions. 

This contains the interface cases of Fig. 2(a), 2(c), and 2(d). For example, those can be encountered in the junction 

between the trailing edge of a wing and the fuselage.  

Multiple node-based chopping can occur when layer chopping originates at two or more points and then spreads 

out between the points. The interfaces of Fig. 2(b) can fall in this category. Such interfaces can be encountered, for 

example, in the aircraft tail region where there is chopping due to both the trailing edge of the vertical tail plane, and 

the horizontal tail plane. 

Finally, in edge-based chopping the layer reduction originates along a sequence of edges and spreads out away 

from this line. The case of Fig. 2(b) is typical for edge-based chopping. 
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Fig. 2. Hybrid grid interfaces corresponding to hexahedra boundary layer grid with non-constant number of layers (“chopped” hexahedra). Cases 

of: (a) one base pyramid, four side pyramids, two side tetrahedra, and two top tetrahedra, (b) one base pyramid, five side pyramids, two side 

tetrahedra, and two top tetrahedra, (c) one base pyramid, two side pyramids, two side tetrahedra, and two top tetrahedra, and (d) one base 

pyramid, two side pyramids, four side tetrahedra, and two top tetrahedra.  

The value of the mesh quality indices for the interfaces depicted in Fig. 2, is listed in Table 1. The quality index 

in each direction is included. It is observed that the indices in the x- and z-directions are equal due to the orientation 

of the interface elements. The quality in the “normal” (y) direction is worse than the “lateral” one.  

 
Table 1. Mesh quality index values for the hybrid grid interfaces. 

Interface Type Qx = Qz Qy Q 

Fig. 2(a) 0.15 0.42 0.72 

Fig. 2(b) 0.33 0.50 1.16 

Fig. 2(c) 0.60 0.60 1.80 

Fig. 2(d) 0.54 0.86 1.95 

 

Next, the effect of stretching and skewness on the four types of interfaces is studied. Figure 3 defines the two 

distortions. Stretching is quantified as the ratio h1/h2, while skewness is measured via the angle ω. 
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Fig. 3.  Distortions of the interfaces: (a) unequal layer heights (h1≠h2), and (b) skewness (ω≠1800) between the layers. 

Some degree of stretching (h2/h1) “helps” the quality of the interface types 2(b) and 2(d) as shown in Fig. 4. This 

improvement is due to the volumes of the elements below and above the interface surface becoming more equal. 

The other two types (2(a) and 2(c)) “see” a deterioration of their quality from the beginning.  

 

 

Fig. 4.  Mesh quality index (Q) vs. the variation of layer heights (h2/h1) for the interfaces οf Fig. 2: case of Fig. 2 (a) (+), case of Fig. 2(b) ( ) , 

case of Fig. 2(c) (□), and case of Fig. 2(d) (○). 

Different degree of sensitivity to skewness is observed in Fig. 5. The interface types of Fig. 2(a) and 2(d) have 

relatively constant Q-values with increasing ω, while types 2(b) and 2(c) exhibit strong sensitivity of their quality to 

skewness.  

 

Fig. 5.  Mesh quality index (Q) vs. skewness angle (ω) for the interfaces of Fig. 2: case of Fig. 2 (a) (+), case of Fig. 2(b) ( ) , case of Fig. 2(c) 

(□), and case of Fig. 2(d) (○). 
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4. Improvement of the interfaces via appropriate central point displacement 

The present section deals with improvement of the quality of the hybrid mesh interfaces via movement of 

interface points. Following experimentation with various motions, it was found that repositioning of the central 

interface point 0 results in improved quality. Two are the criteria to assess the effectiveness of the point 

displacement: (i) the values of the quality index (Q), and (ii) an error that is calculated based on evaluation of the 

solution gradient using the Finite Volume discretization (computed error).  

The central interface point is moved along the straight line between its initial position and the centroid of its 

node-dual volume. This polyhedral volume is the union of the grid elements sharing the central point. Figure 6 

illustrates the initial and the final locations of point 0 for one of the types of the interfaces studied. The 

corresponding variation in the quality index (Q) is shown in Fig. 7 for all four types of interfaces. The parameter 0s

denotes the degree of the displacement as a fraction of the interface characteristic length (h) which is illustrated in 

Fig. 6(a). 

In three of the four types of interfaces, the value of Q decreases until the central point has moved around the 

location of the centroid (Fig. 7). For the fourth type, that of Fig. 2(d), the values remain approximately constant up 

to 0.15os  . The degree of the reduction in Q (increase in quality) varies with that of interface type of Fig. 2(c) being 

the largest. 

 

                                

Fig. 6.  Hybrid grid interface quality improvement: (a) initial configuration, and (b) the resulting mesh after movement of the central point (0). 

 

Fig. 7. Interface mesh improvement by applying central point movement. Mesh quality index (Q) vs. the central point movement ( 0s ). Cases of 

the four interface types:  Fig. 2 (a) (+), Fig. 2(b) ( ) , Fig. 2(c) (□), and Fig. 2(d) (○). 

Next, the central interface point repositioning is applied to a spectrum of hybrid grids created via the CENTAUR 

grid generator [26]. The grids are shown in Fig. 8 and include the following: (a) hybrid mesh over a bump with local 

stretching applied to leading edge area, (b) very thin boundary layer mesh over the bump, (c) grid around a 

rectangular barrier covering the entire span of the domain (z-direction), (d) hybrid mesh around a 3-D obstacle in the 

shape of a plate, and (e) hybrid mesh around an aircraft type of configuration. The case (d) of the plate includes two 
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extra variants, namely the obstacle being extended at fullspan, and also the plate mesh being globally refined. The 

grids contain local irregularities by design so as to “trigger” relatively large values of Q.  
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Fig. 8. Hybrid grids around: (a) a bump with local stretching at its leading edge, (b) bump with a thin prismatic mesh, (c) a barrier, (d) a plate, 

and (e) an aircraft. 

The central point in all the interfaces of each of the grids presented is now repositioned until the corresponding 

value of its quality index (Q) is minimized. The values of Q at all the interface points are also monitored. An 

“interface point” is a point that belongs to different element types (prisms, hexahedra, tetrahedral and pyramids). 

Table 2 lists all cases with the corresponding quality improvement. Two measures of quality are presented: (i) the 

average values of Q over all the interface points, and (ii) the maximum value of Q among all the interface points. It 

is observed that the quality is improved for the majority of the points (see first column). The second column shows 

the average Q improvement as a percentage. Appreciable reduction in Q on the average is observed for most cases. 
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The maximum value of Q over all the interface points is reduced for all cases as depicted in the last column of the 

table. 

 
Table 2.  Effect on the mesh quality (Q) of the movement of the central interface node. 

Grid interfaces 

Percentage of the interface 

nodes with their quality 

improved (%) 

Improvement of the 

average quality (Q) of 

the interface nodes (%) 

Reduction of the maximum Q at 

interface region after applying 

central point movement (%) 

Bump Fig.8(a)  98.85 23.53 14.28 

Bump Fig.8(b)                 100.00 17.23 22.22 

Barrier 70.67 14.81 31.57 

Plate 74.82 27.58 36.36 

Plate (refined) 79.73 26.82 24.00 

Plate (fullspan) 74.69 12.90 17.74 

Aircraft 68.04   3.65  42.85 

 

Another metric of quality improvement that is employed is the computation of the solution gradient ( u ) via the 

Finite Volume method. An analytic field function ( u ) is employed which results in defining a local error that can be 

used to further evaluate the effectiveness of the central point repositioning.  

Specifically, for an incompressible flow field it is 0u   . An analytic function u  was chosen that satisfies this 

condition:  

21 ˆˆ ˆ2
2

u x yi y j y z k  
 

 

where ˆˆ ˆ, ,i j k  are the unit vectors in the x, y, and z direction, respectively. A Finite Volume discretization is employed 

in order to compute the same gradient ( u ). This yields non-zero values at the nodes of the grids which are the 

computed error.  

Figure 9 shows this error at the interface points of the hybrid grid around the fullspan plate before and after 

repositioning. A 12.56% reduction in the average error over all the interface points was realized. Similar results 

were found for the rest of the grid cases.  

Specifically, Table 3 lists both the average and the maximum percentage reduction of the computed error for all 

the cases. Appreciable reduction of the average error is observed in all cases, except from the barrier one which 

exhibits about a 5% deterioration. In the globally refined plate case, the average error reduction was two times as 

much compared to its non-refined counterpart. Regarding the maximum value of the computed error, noticeable 

improvement was realized as the last column of Table 3 illustrates, with the exception of the barrier and aircraft 

cases where the maximum error remained constant.  
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Fig. 9. Comparison of computed error between: (a) the initial grid, and (b) the grid following movement of the interfaces’ central point. Case of a 

hybrid mesh around a 3-D fullspan plate. 

Table 3.  Effect on the computed error of the movement of the central interface point. 

Grid interfaces 

Average error reduction  

at the interfaces (%) 

Reduction of the maximum error in 

interface region after applying central 

point movement (%) 

Bump Fig.8(a)  7.17 5.00 

Bump Fig.8(b)  3.35 8.33 

Barrier -4.93 0.00 

Plate 19.31 8.33 

Plate (refined) 38.72                             30.00 

Plate (fullspan) 12.56                             30.00 

Aircraft   2.00                               0.00 

5. Conclusions 

The present work dealt with four distinct types of grid interfaces encountered in general hybrid meshes with 

variable number of elements per stack of prisms or hexahedra.  

A special quality index was defined that is based on the truncation error in the calculation of solution gradients. 

The part that consists of grid metrics was used making this an a priori quality evaluation. 

The quality index (Qx, Qy, Qz) of the four interface types was calculated for each of the space directions. The 

effect of grid stretching and skewness was examined for those interfaces. The degree of sensitivity of each interface 

type to those distortions varies (Fig. 4 and Fig. 5).  

Improvement of the quality was achieved via repositioning of the central point in each interface type. Movement 

towards the center of its dual volume improved the quality up to a degree of movement (Fig. 7). 

Several grids, included an aircraft mesh, were employed to measure the improvement in quality at their 

interfaces. In most cases, both the average quality and the maximum one over all interface grid points was improved 

(Table 2). The same was observed with a computed error based on an analytic field function (Fig. 9 and Table 3). 

Future work involves the improvement of the grid interface movement algorithm to be included in a constrained 

optimization process. Further, additional interface types that are less frequent will be studied.  
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